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Abstract: A user-friendly ‘divide-and-conquer’ algorithm is presented for finding all the self-
intersection points of a parametric curve in the Bernstein-Bezier representation. The underiying
idea of the algorithm is to deal with the Bezier polygon instead of the curve description itself.
By alternately subdividing the Bezier polygon and estimating the self-intersection regions the
self-intersection points are finally approximated by straight line intersections of the refined Bezier
polygons. The algorithm also calculates the parameter values of the seif-intersection points. In
addition to the convex hull and the approximation property of the Bezier polygon the working
of the algorithm is based on a very intuitive angle criterion.

0. Introduction

For two explicit given curves fi(x) and fi(x) intersection points of f(x) and f(x) can be calcu-
lated using numercal methods like Newton’s method by rewritting the problem as that of finding
the roots (zeros) of the function F{(x) = f{(x) — fi{x). If the equation of one curve is given in implicit
resp. explicit form and the other in parametric form, we can substitute the parametric form into the
unphcit resp. explicit equation. The (usually non-linear) equation we obtain can be solved by
Newton's method again. If both curves are @ven implicitly as (non-linear) functions f(x,)) and
#ux,y) of x and y or as parametenzed curves x, = x,(f), 3, =38 and x; = x,(t), j;=),0t1) we
have 'o solve the two equations fi(x,:)=0 and fi(x.y)=0 resp. x{f)—xyr)=0 and
v =ity =0 sumultaneously, what can also be done by Newton's method [Fuawx, Prait '85]. A
geometricaly based modification of the methods described by Faux and Pratt to calculate the
intersection points of two parameterized curves was gven by Hoschek in [ Hoschek '85]. Hoschek's
method works also for the problem of calculating the self-intersections of a curve. Self-intersections
of a curve can appear for example as boundanes of loops of parallel curves. often called offset
curves. ([ drnold "86), [Farouki '83], [Hoschek "85, ‘87), [Klass '83), [Lyche. Mbrken '§7].
[Tiler.Hansen 54). For the loop removal the self-intersection points have to be detected. For ra-
tional curves this can also be done by algebraic methods which have been introduced 1n the area
of CAGD by Sederberg, Goldmann and Anderson. They descnibed in [Sederberg '84). [Sederberg
et al. '$4, '83] and [Goldmann '83] a method ot classical algebraic geometry for solving the cunve-
curve intersection problem for rational planar and non-planar curves and in [Sederberg et ul. '§5]
a method for finding the double pownts and by this the self-intersection points of planar rational
cubics (see also [Salnon /879). [Hilton 327, [Wuker 30]).
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In CAGD the B-spline-Bezier representation of curves is very popular and therefore it is of im-
portance to have (self-)intersection algorithms for this type of curve representation t00. so that no
conversion of the curve description [Duannenberg.Nowacki ‘85), [Hoschek ‘87] is necessary.
Curve-curve intersection algonthms for B-spline-Bezier representations have been described by
(Lane et al. '80]. [Cohen et al. %507 and for quadratics by [Yang er al. ‘$6]. Yang calculates the
intersection points using an algebraic method while the algorithms of Lane and Cohen are subdi-
vision alzgonthms taking into account the geometric relationship between the curve and its defining
control polygon. Pure subdivision algorithms are very time-consuming and need a lot of storage
space [Griiiiths 757 but they can accelerated by using in addition an estimation of the intersection
regon which yields to the so called ‘divide-and-conquer’ algorithms. For B-spline-Bezier repres-
emations the ¢stimation of those parts that do not participate in the intersection can be done by
using the convex hull property [Lane er al. "S07, [Peng '84] (see also part | of this paper) or. rougher
but more easily and quickly handled by min-max boxes (see part II of this paper). An estimation
using min-max boxes can also be done for non-B-spline-Bezier representations [Koparkar.\udur
"$3].

A disadvantage ‘of the subdivision and even of the more advanced divide-and-conquer algorithms

., against the algebraic based intersection algorithms might be that they are more time-consuming
" Recause of the.subdivision process [ Sederberg,Parry “86]. But the great advantages of the divide-

ind-conquer algorithms are that

® they are very user-fnendly - no worry about “suitable’ starting points,

e they find independently - that means without any interactive disruption to the user - all inter-
section points within the specified tolerance,

e they can be formulated eusily for arbitrary polynomial degree and for non-rational and rational
representations. and

e they are numenically very stable because of the extraordinary numerical properties of the Bernstein
polynomuials [ Farouki,Rajan '87], [ Sederberg,Parry '86)].

Because of these favorable properties of the intersection algorithms based on the B-spline-Bezier
representation using divide-and-conquer methods and because of the reason named above we would
like to have also a self-intersection algorithm of this kind. The existing curve-curve algorithms can
not be used directly by doing the curve input twice, because in this case the divide-and-conquer
method will fal in the sense that no elimination of curve parts that do not participate in the self-
intersection will be possible. Furthermore the final calculation of the self-intersection points, done
by intersecting straight line segments defined by the control polygon will also fail by doing the same
polygon wput twice.

The only sclf-intersection algorithm for B-spline-Bezier representations I know was gven in
(Tiller,Hansen '34]). They calculate self-intersections of (rational) B-spline curves in a two step
procedure. First they find the intersections of the control polygon with itself and then they use an
iterative method (e.g. Newton) to improve the approximate solution found in step one. They know
that this method can fail, because a curve can have a loop even though its control polygon has no
self-intersection, but by using control polygons which approximate their curves very closely. ie.
building up the curve by a ‘large’ number of segments, they try to make sure to be ‘on the safe side’.
Although Tiller and Hansen are working with B-spline techniques, their algorithm dosen't belong
to-the powerful class of the divide-and-conquer algorithms because their algorithm dosen't use the
typical kind of strategy of the divide-and-conquer algorithms for the evaluation of the self-
intersections.

The algonthm presented here is a user-friendly divide-and-conquer algonthm for finding all the
self-intersection points, including their parameter values, of a parameterized non-rational or rational
curve of arbitrary degree in Bezier representation. For the creating of the algorithm the geometnic
relationship between the curve and its defining control polygon was fully taken into account. By
alternately subdividing the Bezier polygon and estimating the self-intersection regions the self-
intersection points are finally approximated by straight line intersections of the refined Bezier
polvgon. In addition to the convex hull property and the approximation property of the Bezier
poiszon the algonthm is based on a very intuitive angle criterion which is together with the convex
hull property used for estimating the self-intersection region of the curve.

Because a curve-curve intersection algorithm is an important part of the self-intersection algorithm
of part [II of the paper. and because the final calculation of the self-intersection points and its pa-
rameter values 1s done in the same way as in the curve-curve algorithm, a short explanation of a
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divide-and-conquer algorithm for calculating the intersection points of two parameterized non-
rational or rational curves of arbitrary degree in Bezier representation is given in part [, The
curve-curve algorithm described there differs from the ‘classical’ one introduced by Lane [Lune et
al. 'S0] in some ‘details’, mainly in the concept of the ‘control unit’ and in the final calculation
of the intersection points and its parameter values.

Part [V tinally includes a short description of how to calculate the self-intersections of a Bezier
spilne curve.

All algornthms are written for planar curves. but for the extension to spatial curves only ‘a third
equation for the z-coordinate " has to be added evernwhere where coordinates have to be evaluated.
The paper starts with some introductory words on the Bezier representation of (planar) curves.

I. Bezier Curves

A (planar) Bezier curve is defined by

m
B = ) b B
k=0
where b, =(x,,).) e R} ue[0,1]and

B,':'(u) = (ZI) u* (1= u)m—k

are the {ordinary) Bernstein polynomials of degree min u. The coefficients b, € ®? are called Bezier
points. They form in their natural ordering given by their subscripts the vertices of the so called
Bezier polygon (see Figure 1).

It 1s possible to build up complex Bezier spline curves from a number of Bezier curve segments.
The conditions for C” continuity of adjacent curve segments can be found in [BoeAm et al §4].

The Bezier description of a curve is a very powerful tool because the expansion in terms of

Bernstein polynomuals yield to a geometric relationship between the curve and uts defining Bezier
pownts. For example:

o the Bezier polvgon gves a rough impression of the Bezier curve (see Figure 1),

o the curve has its endpoints at b, and b, with tangent vectors defined by by, b, and by b,. b, _,
isee Figure 1),

® commex huil property: the Bezier curve lies completely within the convex hull of its Bezier polygon
(<ee Figure 2).

o the curve pout Blw). for any i, € [0.1] can be computed by repeated de Casteljau steps by the
recursion tormula

) = (1 - w) b ) + g b (00)
where br=b, and B(w) =by (see Figure 3).

The pownt 4 = i, subdivides a Bezier curve into two C” continuous segments. Each segment 15 again
a Bezier curve of the same degree as the original one. The Bezier powunts of these two segments are
hiproducts of the de Casteljau construction for the evaluation of the pownt B(w). They are gven
by b4 and by k=10, ..m). The subdivision process may be repeated yielding a sequence of
polrzons. For this sequence of polygons we have the imporntant

o upproximation property: f the w, are dense in [0.1] the sequence of polygons converges 1o the
cune.

Figure 4 dlustrates how the curve can be fixed using the approxumation and the convex hull prop-
ety
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Figure 4. fixing the curve by the approximation and the convex hull property
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A rational (planar) Bezier curve can be defined by

Al

Rw = Z b, Ry ()

.- where b, =1(x,,),) e B we[0.1]and

=
=i}

are the rational Bernstein polynomial of degree 7 in u with weights 8, € B [Pieg/ '86].

Figure 5 compares the tordinary) Bemstetn poivnonuals B;tw) and the ranonal Bemstein
peivnomuals Row) with g, >0 tor all &

It we demand B, >0 torall ¥ we have all the properties and algorithms for rational Bezier curvas
which we have for ordunary ie. non-rational curves [ Farin 53], [(Tiiler 82]. therefore there 1s in this
case no principle ditference between a curve-cunve resp. a curve self-intersection algonthm for
= non-ratwnal and for rational Bezier curves.
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Figure 5. ordinary and rational Bernstein polynomial of degree four, (5, ... 3;) = (1.3.2.5. 1)

I1. Curve-Curve Algorithm

-

’,

The underlving tdea of the curve-curve algorithm is to deal with the Bezier polygon instead of the o
curve descnption itself, using the relations between polygon and curve mentioned above.

The proaram of the algonthm is to subdivide both curves repeatedly which vields at the same time
10 a subdivision and refinement of the polygons. This is done until a fine polygon structure 1s ob-
tawned and the curves can be approximated well by the polygons defined by these subdivisions. This
rrocedure reduces the problem to a number of straight line intersections that can be handled easy.
Because subdividing the whole curves in each algorithm step 1s relatively time-consuming and needs
a lot of storage space in addition an estimation of the intersection region is done.
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The alzonthm consists of four main parts (Figure 6), they are described now.

e

e First, the tntersection area is estimated. Using a coarse but very quick estimate of the possible

b

intersection regons of the two curves those parts of the curves that do not participate in the

intersection will be eliminated as early as possible in the algorithm. -
@ Sccond. refinement occurs by subdividing the Bezier polygons. Except at the beginning, the al- o

gonthm subdivides not the whole Bezier polygons. but only those parts whose corresponding {:-::

curhe portions mught participate in the intersection. An adaptive subdivision is done to detect the
separation of regons of the two curves that do not intersect readuy.

e Tturd. the intersection points are calculated by intersecting the Bezier polvgons of the curve
subsezments of possible intersection. Part three also calculates the parameter values of the
Nter-2ction points.

e Pourth. error values are calculated. tolerances are checked. this part of the algorithm is the con- y
troiny umt of the algorithm and is very imponant tor dealing with dufficult and complicate cases.

P

“y VWP
e
«

'-','-' "' ". ".

Bestde drawing parameters for creating the plot output. the input of the algonthm consists of the
poivnomual Jezrees (W and m) and of the Bezier pounts of the two Bezier curves (B(7) and bi).
turthermore ot an error tolerance value 10 determine the accuracy needed. Pre-settings for con-
trolling the algonthm can be specified in the program too.

The first step of the alzonthm is to subdivide the two curves simultaneously forming two new
subsements on each curve, A min-max box detined by the maxumum and mummum x and » co-
ordinates of the curve segments defining Bezier points is built for each segment. The boxes of the
tho ornves are then compared with each other (a companson using min-max boxes mstead of the
centex hulls 15 rougher. but much more 2asiy handled and quickly practised). Those subsegrments

N



whose boxes do not intersect any box of the other curve will no longer be considered. Only those
subsegzments whose boxes can not be separated from that of their nvals will be deait with further
(Figure 7). For this, Bezier points of pairs of interfering subsegments of ditferent curves will be
provided with an subscript. called ‘interference index’. By thus a List of pairs ot segments of duferent
curves which mught intertere s created. In the following, Bezier points, 1.e. segments of the same
tnterterence indeX, will all o through the algonthm subroutines.

The de Casteijau subdivision process. the min-max box {ormation and the separability test are
connectad by an algonthm loop. which will be done as often as is required by the level of accuracy
necded. After each subdivision. two new subsegments are formed, each corresponding to a smaller
convex hull. When more and more subdivisions are done each convex hull becomes smalier and
smailer. while the curve topology near the intersection is reasonably closely approximated by the
pols zons of the subsegments.

input

i
subdivision
1

estimation
toop 1 I

intersection
1

control unit
| loop 2

output

Figure 6. principle structure of the algorithm

-

Figure 7. estimating the intersection region using min-max boxes

Al subsegments which might participate 1n the intersection ¢o through the third part of the algo-
nithm: the section that computes the intersection points and the parameter values of the intersection
powmts what 13 be done in the following way.
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B, = (BY,.B1) j=00 M

be the Bezer points of B,(r) and let byr) a subsegment of the second curve b(r) of degree m
and

b, = (bx,. by k=0, ...m

be the Bezier points of by(z).
The polvgon legs defined by the Bezier points are given by

where G =(GX..GY), S.=(SX.SY). S.=B._, B and T e([0,1] and simular for g..
If G and g, intersect in P (Figure §) re.

GAT;=TP) = P = gyl =4(P)

we have for the parameter values
s_vk(BXj = bxy) — sx (BY; = byy)

T(P) = v
o
and
. SY/(BX/,- — bxy) - S(’{,(B}’/- - by
)
where

N = SYisxy — 53, 5&

TiP) resp. L.(P) are parameter values with respect to the polygon legs G. resp. g, but because
the de Casteljau refinement is always done for 0.5 we also know the parameter value 7. of
B, = B.iM and the parameter value ¢, of b, = b,(0) so that the parameter values T(P) and uP)
ot the intersection point P with respect to the parameter intervals of the originally given Bezier
curves can be calculated by (Figure 7)

T+ (T =T TP
b

T(P) = Tj -
and sumular for «P), where s is the number of subdivisions and 7 are the parameter values aiven
to the Bezier points B. of the Bezier polvgon of B{r). The T, (and so the ¢, gven to the b,)
can be Jetined in different ways for example

by an equidistant measure

= L
7-/«? Y
by an chord length measure
/ A=l
T = & N IBy =Bl  where L = > B, -B)

<

=\

/=x)

by an geometric average measure of 7¢ and 7T
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Figure 8. calculating of parameter values of the intersection points

As a measure of error we can use the distances
Rgy = I B(T(P)) ~ b{«(P) I
Rgp = IIB(T(P)) — P
Ryp = ib(P)) — P

Per default a minimum number of de Casteljau subdivisions will be done before part three will be
started (loop 1). If the accuracy needed is 0.002 for example the pre-setting has to be 6 (see table
1) an this will vield in almost every example to an accuracy of about 0.002, if in some complicated
case not, the control unit will effect to do as many additional subdivisions as needed for the speci-
fied accuracy (loop 2).

When the two curves intersect in a very small angle or do not intersect, but come very close together
part three might calculate more intersection points as two curves of degree W and m can produce
or might calculate (pseudo-)intersection points [ying very close together in parameter space whuch
has to be checked (the statement of the parameter space criterion is stronger than an statement of
an analog coordinate space criterion). In both cases the control unit will also effect to do as many
additional subdivisions as needed for clanfying the situation.

The repcatedly done polygon refinement wnitialised by these cniterions will be stopped in different
wavs: first, it the result has the accuracy needed. second. there is a default of an upper boundary tor
the number of de Casteljau subdivisions and third. there is a default of an maximal (possible) ac-
curacy Thus default value is dependent on the tnitialization of the vanables, e.g. real or double
precision real and of the machine accuracy for each kind of initialization.

Finalls the control unit checks if the distance between intersection points in coordinate space is less
than a specified tolerance. If ves, an intersection pount is defined by the anthmetic average of these
poits

Examples
Table 1 lsts the maximal error

R = max [ Rgy. Rgp. Ryp} 3

as it depend upon an increasing subdivision factor for the examples | to 6 for equidistant
parameternzation for which we got the best results.
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subdivision tactor 4 5 6 - N
Example 1 000904 0130 000029 0000712 TRINEIR!
Example 2 004363 N.00791 0.00210 0 OND Sy Do) 4
Exanple 3 000273 0.0007] .00 14 000Ny s RN
Example 4 13.00430 0.00271 Nn.0ol21 0.00047 o
Example 3 0.03817 001037 1300260 U 0uNA2 g
Example 6 0.05233 0.00836 00177 TNLEY OO
Table 1. R for equidistant parameterization

Example 1
by PY TIP) P bx by B8Y BY
312009 0.76362 0.09334 2 mod 33 13 40 ] s

16734 0 60298 0.32366 P3aR2 33 0.7 4.0 30
WY s T s I 0.0 |23 0.0 26
3120109 0.76162 0.90 6 TiA 3.3 -0.7 40 30

33 | 3 41) J3%
parameter vaiues and x-y-coordinates of the intersection points Bezier points of b(f) and of B(N
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Example 2
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2
. PY PY T(P) 1P bx by BY BY
A ERE LiT249 | 003029 | ossddn no_| 00 AR LR

L <. 197778 N.054"1 LA IN2S 0.9 140 120 30
' TR 19979 01437 oy 30 | 90 2109 Lo
! ISR 397404 NISLTS e 30 S.0 40 10
q NERIL 230000 U Sunon ‘ S

ARS 23 .32 . .

R 102396 DEIR2S ; Bezier points of b(¢) and of B(7)
: - 28T REANIC) D RERIA T

S ytand tETRRRY Dudszy NS
: AR IN2TEG ST A (=370

parameter salues and -y ~coordinates of the intersection points
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Example 3
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parameter values and x-y-coordinates of the intersection points

)

o) o)

PY PY T(P) l(P) bx b_V BY BY
.3 64333 1.49822 0.23120 0.27305 -3.0 0.0 -6.0 3.0
-2.92393 1.30036 0.29330 0.32148 -30 | 3535 -6.0 0.555
.0.77223 1.49989 0.44827 0.45409 -390 -1.0 -3.0 4.0
0.77325 1.49989 0.55173 0.543591 0.0 417 0.0 Liv
2.92393 150086 0.70670 0.67852 390 -1.0 3.0 30
364153 1.49822 0.76880 0.72695 50 1 3.555 60 | -0.353

5.0 0.0 6.0 10

_.-‘\q «

Bezier points of b(!) and of B(T)
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Example 4

PY PY TP tP) bx by

-5 89310 223193 0.14418 0.06613 -4.0 0.0
268113 321920 0.33243 0.35152 -10.0 6.0
268113 321920 0.66757 0.64848 -2.0 6.0

S9N 2.23393 0.85582 0.93387 -2.0 0.0

20 0.0
2.0 6.0
10.0 6.0
4.0 0.0

parameter values and x-y-coordinates of the intersectuion points

Bezier points of b(r) and of B(7)
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Example 5

- D !

PY PY T(P) uP) bx by BY BY
360159 -410631 0.01787 012443 -1 0.0 -3.0 -5.0
.5.43R52 40,7632 0.10171 0.28110 -15 -8.0 -12.0 8.0

O ) 4.14%44 0.50000 0 S$0000) -10.0 -8.0 no BY.
3 1dA3d -0.76332 0.89829 0.71590 -10.0 9.0 1219 8.0
RSIRED) -4.10631 0.98213 0§7557 0.0 9.0 3.0 .50
10.0 9.0
10.0 -8.0 BY, = 2.062507
parameter values and x-y-coordinates of the intersection points 1.5 .80
1.5 0.0

Bezier points of b(¢) and of B(T)
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. Example 6

Yy ¥ E_ &8

w_A_® =
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Tzf
L
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2 .
4 )
o L)
" [
¢ . . . - N
s Py Py T(P) (P bx by BX B .
e b 2966 163288 0.03154 0 aRy T 39 19 n0 no -3
b S STRI . 84192 0.33990 18577 14.0 6.0 20 Ny A
f~ LA 2238219 0.49353 HOSnsT 10.1) -60 -1003 x 0
: AT 2147973 0.62143 (28232 2120 6.0 -10°3 94
y 520 191463 0.96613 anin2 129 |2 5 i p
5 ) 2.0 1) BY by
; o ' o <0 BY, '-
parameter values and x-y-coordinates of the intersection points .
¢ H1) o
¢ K
o . ‘ 3
3 Bezier points of b(1) and of B(7) :
. . o - "
g (BY,=BY,=—4129307) N
o b
Z ¢
.‘ 13 ‘
D)
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I11. Self-Intersection Algorithm

} It is not possible to calculate the sell-intersection of a Bezier curve by the curve-curve alyonthm
‘ of part [ by Jdowng the curve input twice because i thus case the separability test of min-max boswes
wil wiwans be posttive ~o that no elimunation of curve parts that Jdo not participate n the seil-
wrersection i3 possible. Furthermore pant three wil fad by doing the same mput taice. so that an
additional critenon 13 necessary. .
What we would Lke to have 15 a geometric criterion based on a relation between the cur.e and its
detinupg Bezier powls 12, its Bezier polygon which is as simple and at the same ume as <trong as
the convex nul preperty. Thus turns out to be more dulficult than 1t looks Lke tirst. because the
situation s compicated by the tact that ‘

@ 1t 15 posudle that the Bezier polygon has a self-intersection but the Bezier curve has no selt-
mntersection (see Figure 9)

but on the other side =ven

e  the Bezier curve has a self-intersection the Bezier polygon does not have to have a self-
uitersection (see Figure 10).

Btetate e
* \'\ . 8 '\.‘
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et
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Figure 9. polygon self-intersection
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Figure 10. curve self-intersection
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Furhermore.

o ¥ v 12 the sum of the amournts of the rotation angles 1, of the Bezer polizon legs s
croater than = the Bedwer curve does not have to have aselt-ntersection rsee Froure [ and even

e iy sum frem w=1 10 «= L of the amount of the rotation anzle of the tunzent veotor

B . b Boerier cure s zreater than < the Beszter curve does not have 1o hasve a eid-

corseenon osee booure [0
Bur.
8 the <um of the amount of the rotation anc’e of the tangent vector of the Bezier cunve 15 oreater

than < o the Bezier cunve has a self-intersection fsee Frgure 131,

X3

Figure 11. S I3,| > 7, no self-intersection

7'7 —

ct i O

Figure 12, no self-intersection
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Figure 13. Bezier curve with self-intersection

Figure 14. all z, with same onentation =T !a,| = T |6, =

B3

33

X
X, BL

Figure 1S.  x, with different orientation =3 lz,j > X 18, >
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Because of the de Casteljau construction which creates in every step a convex combination of the
bY and because of the approximation property mentioned in part 1. the sum Y 12,1 is equal to the
sum of the amount of the rotation ane of the tangent vector of the Bezier curve if the onentation
of the rotation angles of the Besier polygon leas is the same in every inner Bezier point (see Fizure
[4). But the sum of the amount ot the rotation anule of the tangent sector of the Beser cure s
smalier than ¥y, if the orientation of the rotation angles of the Bezier polvgon legs is not the
sams in ev oy ner Bezier pownt (see Figure 135, that tollows from the smoothuing properts of the T
de Cuastelyau subdivision process together with the approxumation property mentioned mn part |
So we have the statement that

e

L
8 the sum of the amount of the rotation angle of the tangent vector of the Bezier curve is alwavs 0
smaller or equal the sum 3 !xz,! of the amounts of the rotation angles of the Bezier polyvzon legs. '
By combining the two ® statements we get the .
® ungle criterion: The sum 3 !z,! of the amounts of the rotation angles of the Bezier polygon legs y
15 greater than = if the Bezier curve has a self-intersection. ,
[or the algorthm we will use the contraposition of the critenon. \
® ungle criterion: A Bezier curve has no self-intersection if the sum ¥ ix,| of the amounts of the
rotation anzles of the Bezier polyvgon legs 1s smaller or equal than =. ;
By this we have a very simple geometric criterion for deciding whether a curve has a self-intersection
or not and for the elimunation of curve parts that do not participate in a self-intersection. What we ‘S
have to Jo 1s to calculate the sum 3 la,! of the polygon angles 1z, and compare with = . If we
hate 3 .7,| < 7 we know that there is no self-intersection of the curve (Figure 16.]1 and 16.2). but
¥ ¥ 'a,i > 7 the curve might have a self-intersection (Figure 16.3 and 16.4). For clanfyving we
subdivide using de Casteljau and check the smaller parts again against the angle cntenion. 0y
)
/& % :
AN 1 \/—\\ —_— :
/ <
x
2 uz '
)
[
=
Figure 6.1 Figure 16.3 R
o
u ‘
< &4 . 1
M n—
W - -
$ R
Figure 16.2 Figure 16.4

-
"
o
v
»
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Figure 16. the angle criterion
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To budd up a sclf-intersection alzonthin the idea of the angle test has to be combined with the idea
of the mun-max box test. This 1s done n the tollowing way.

The alzonthm conasists azun of the four main parts of Figure 6. But part one of the aizonthm for
' axtimating the self-intersection regon of the curve consists now of two different tests. the mun-max
box test and the angle test. Tigure 16 @ves the example ot an subdivided Becier curve having -

VOrAl seit-Lntersections. (\s we can see. tiere 1 2 sudsement (subsezment Bo) with self~intersection

(pownt P thore are two subsegments with common boundary point (subsegments B, and B.) cre- )

ating the seit-intersection pownt Py and there are subsegments (subserments B, and B,y whuch are -
not connecied to each other but create the self-intersection point Py of the Bezier cune BiT. To ) e
distingunsh between these three duterent cases and for controiling the algorithm we introduce a o fa

called  renns ondex

The self-mtersection of a segment of genus one that means a segment of case one has to be checked .
by using the angle criterion. [t the angle test1s positive .2 3 {x.: > = a refinement has to be done
to clanty the situation. The retinement of a genus one sezment produces two subsezments of zenus
one and one pawr of subsegments of genus two.

A par of subsecments of cenus two that means subsegments with a common boundary point have
also 1o be checked against the angle criterion but now the angle sum of both polyyons hus to be
caculated. The mun-max box cntenton can not be used because of the common boundary point
of the two seaments. [f the angle test 15 positive a refinement has to be done for both sezments, 1t
produces one pur of subsegments of genus two and three patrs of subsegments of genus three.
Subsesnents of genus three can be dealt with as in the curve-curve algorithm ot part Il 1e. for
calculaning the sel-intersection pownt P, of Figure 16 we do need only the min-max box test not
the anze test because the refinement of paurs of segments of genus three can produce pairs of sub-
segments of genus three only and no (pairs of) subsezments of genus one or two.

o T W

tr

"
*
.

[

-4,
[

B, B,

Figure 17. possible subsegment configurations contributing to the seif-intersection
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o

o
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In the first step the algorithm has to deal only with one curve segment of genus one - the Bezier
curve ~ezment which has to be checked for self-intersections. If the angle test is positive a refinement
has to be Jdone, so that in the second step the aleonthm has to deal with two subsegiments of genus
one and one pair of subsegments of genus two and the result of this step might be subsegments of
zenus one and pairs of subsegments of genus two or three. When more and more subdivisions are
done not only each convex hull becomes smuailer and smaller but because of the approxumation
propenty of the Bezier polygon also the anze ~ume of each subsegment becomes smaller and
smaller 0 that after an tnitial increase of (pawrs of subsegments of genus one and two the number
of fpairs of) subsegments of genus one and tao Jdecreases very fast untl there are only pairs of
subseuments of genus three. From this mement on the self-intersection aJgonthm works i the
same way as the curve-curve algonthm descnbod in part [ of the paper. That also means that part
t+0 and part three of the algonithm - the subdivision of the curve in the aim of refinement and the
caculation of the seif-intersection points and parwmeter values - is done in exactly the same way
as desenbed in part [
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The control unit also works as in part 11 descnbted except that it checks in addition if the subdi-
vided control polygon turns through 180 degrees at a subdivision point which umplies a cusp at thas
point (Example 4).

Examples

Table 2 lsts the maximal error given by ® part I as it depend upon an increasing subdivision
tactor tor the examples | to 12 for equidistant parameterization.

subdivision factor 4 5 6 7 <
Example | n.28064 0.01003 3.00568 0.00269 060110
Example 2 .08635 0.03628 0.01297 0.00189 0.u007s
Example 3 0.20799 0.09101 0.02185 0.00619 0.60101
Example 4

Example 3 (.023910 0.00445 0.00156 0.00007 0.0000 3
Example 6 0.03326 0.01207 0.00236 0.00080 0.00000
Example 7 0.04659 0.01579 0.00055 0.00027 0.0U012
Example 8 0.06215 0.02459 0.00620 0.00150 0.00040
Example 9 0.10368 0.01132 0.00434 0.00162 0.00032
Exuample 10 0.10184 0.01123 0.00427 0.00159 0.00032
Example 11

Example 12 0.07962 0.00794 0.00332 0.00124 0.0n025

Table 2. R for equidistant parameterization

Because of the bad character’ of the two cusps appearing in Example 11, this example requires
more than 8 subdivisions for the decision if the curve has self-intersections or cusps.

T ,‘-:.'.-'_.': _."-;- AT AT R 2 e T S S A Sl Vs
P 9 W SRS WLV, oL, S Sl Bl Sl S S S P NS K

AT NN RSNy
K M SE S UL FCGIES
AN AR AN AT M AT AT TR

. R T R
PENCN N R L I A A A o e



Example 1

()

- A

Ya LU

@

Py PY 1 uP) (P)
Yoy ~ 2 | o ASSa (BT WAVTY
S 33ANS g lh b g 1178224
IEnnre " o l 24Ny NTIS
1 ASANS i I o442k b 2dTTA HynTig

. ."- ’-.‘. "-"‘-I'-V'.,'vl'-,'-l'»’ LS

! X R
2 Lo
Nt | o
N BN
-3
SR N
N j» A
2o b
1 | 10

%

WL

S v v
.'Ls«,a’!"-

- w e
-

g S
LS

e
5 Y

A AP

. - e -
L ". . .‘f\ LN
» A O

<y

-

",‘"\"\. '>' b

v

o

‘) .l, [

e

ey
l‘k‘-‘n Y

YA

BT Y
l'~l..l [4 ‘,‘

0

NI b
AR ]
'r.'rﬂ

S
' 5

v
‘l')‘lj.
Sl

[
[ ]

o,
hJ

'@ l“l“l‘j

el

[



AR e -l o i i e , . AAIE S22 RS UM A MR AP )

parameter values and x-y-coordinates of the intersection point
Bezter points of bir)
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Example 3

PY PY 4(P) 4(P)
1).91426 5.07460 0.08358 0.44207
-0.90426 5.07460 0.55793 0.91642
0.00000 5.71900 0.05154 13.94846

parameter values and x-y-coordinates of the intersection points
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bx by
-2.0 8.0
38 0.0
38 8.0
RIS 8.0
Ny -1.0
-8 S.0
238 3.0
238 0.0
20 S0

Bezier points of b(¢)
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Example 5
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o PY PY 4(P) 1 P)

o 1).33333 244 0.21133 0.78867

N parameter values and x-y-coordinates of the intersection point
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Example 6
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PY PY L(P) 5(P)
0 U000 2.08204 0.13673 0.86327

parameter values and x-y-coordinates of the intersection point
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Example 7
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PX PY 4(P) 4(P) 5
0.77089 6.26442 0.14003 0.92162 i

Py

parameter values and x-y-coordinates of the intersection point
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Example 8
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Py PY t(P) 4(P)
1 59322 6.51678 N.41859 0.92722
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parameter values and x-y-coordinates of the intersection point
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Example 9
9
A 4
PY PY t.(P) 4(P)
-0.65030 27277 0.17750 .38624
0.00000 301382 0.22167 0.77833
0.635030 2.7 041076 0.92250

parameter values and x-y-coordinates of the intersection points
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Example 10

PX : 4(P)
0239~" ddondT 24154 047076
S 2T I dnsT 32924 ).73846
0 anoo) RIRL RS 22167 N.778233

parameter values and x-y-coordinates of the intersection points

Bezier points of bir)

-
-
-

A P TP R AP R P TS SR A P Aty S M et st e




v

o
o

-
"t

)

-

s

» .

]

., e e e s
o I\.I'_J' 1) ,..

N I S S G A S e G O A A A R A

-

Example 11

< >

PY

PY

4P

1,(P)

1 D00YY

328682

022167

0778113

parameter values and x-y-coordinates of the intersection point
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g
PX PY t,(P) LPY ”

1. HpNn0 3.52273 0.22167 0.77833

3

parameter values and x-y-coordinates of the intersection point
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1V. Self-Intersections of Spline Curves 2

Ll

ot
Normally e are not realy interested mosingle Bezter curve sezments but in B-spline resp. Bezier “
splne cures consisting of seneral cure seoments. Beesuse a Bespline curve can be redefined i a :‘
Buoziwer fomm o fe Osio alzonthm wdding multiple knots in one pass [Cohen et al. S0 or » Y
Byoasng Wiy more etticient Boehm aigonthm adding the muluple knots one by o
one (80 selfsintersections of Bespline and of Bezier splne curves can be caleulated :'.
‘ using the aizonthms JI part 11 and 1L .-: \
; 3
. . . R ¢
[5e sezments Bgw of the Bezier representation of the <pline curve mught be given by -
m __r
| B“vu) = Z b”"l\'-ﬂ'( Bﬁ'[u, ,_:‘
=y '_

where ‘.-i:
. . . , e

A= (l=wag ~ uig,,, 0<su<gl, K=20 ..\ »

L

. . - . . . , v

12, the spline curve is defined with respect to a partition of the domain space by  &nots s

.

by < A< by Wy

: ~
o

The seif-intersection points ot a spline curve can be calculated by doing the curve-curve intersecticn &
Lzonthm for all pars of segments B, and B with A=K and by doing the cure seif- L
mtersection alzonthm for all segments By . \\hﬂe the algonthms of part 1I and I calculate th
parameter ~al es of the self-intersection points with respect to the local coordinate domain [2.1] T
we also hnow - because of the lnear relation between + and w - the 4 parameter values of the "
self-intersect;on points. o~
S

®

7
Remark NS
)

[us studv was done as a pre-study for the creating of a surface self-intersection algorithm for ’
perametenzed surfaces in Bezier representation. The surface algonthm is descnibed in the paper :5,-:‘_
Self-Intersections of Parametric Surfaces . Technical Report 2 NPS-33-88-002. Naval Postgraduate )
Schecolh. Monterey (19%%), -
ole

I.\

o

gS
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